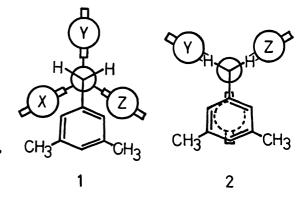
TWO CONSECUTIVE GEAR MOTIONS IN CONFORMATIONAL INTERCONVERSION IN 9-(2-METHYLBENZYL)TRIPTYCENE DERIVATIVES¹⁾


Gaku YAMAMOTO and Michinori $\overline{O}KI$ Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113

The conformational interconversion among $\pm sc$ and ap forms of 9-(2-methylbenzyl)triptycenes is found to occur by two consecutive gear motions: methyl-inside conformers formed by the synchronous rotation about the CH₂-Ar and CH₂-C₉ bonds of the methyl-outside conformers are so unstable that another synchronous rotation takes place in succession to afford methyl-outside conformers. The change in 1 H-nmr line shapes and the barriers to rotation are discussed.

9-(3,5-Dimethylbenzyl)triptycene derivatives were shown to undergo conformational changes through two types of processes: "isolated rotation" about the ${\rm CH_2}$ -Ar bond without rotation about the ${\rm CH_2}$ -C₉ bond and synchronous rotation ("gear motion") about the ${\rm CH_2}$ -Ar and ${\rm CH_2}$ -C₉ bonds, transition states of which are shown by Newman projections along the ${\rm CH_2}$ -C₉ bond axis, 1 and 2, respectively. Here we report observations which are best interpreted on the basis of two

consecutive gear motions in 9-(2-methylbenzyl)-triptycene derivatives.

The compounds examined $(3 \sim 6)$ were synthesized by the reaction of anthracenes 7a-c with benzynes 8a-c generated in situ from the corresponding anthranilic acids and isopentyl nitrite (7a+8a, 7b+8b, 7c+8a, and 7b+8c, respectively). The anthracene 7a was synthesized by dehydration,

7a: U = OCH₃ b: U = H c: U = C1

8a: V = W = H b: V = CH₃, W = H c: V = W = C1 with thionyl chloride-pyridine, of 4-methoxy-10-(2-methylbenzyl)-9,10-dihydro-anthracen-9-ol, which was prepared by the reaction of 4-methoxyanthrone with 2-methylbenzyl chloride in the presence of potassium hydroxide in methanol followed by reduction with sodium borohydride. The anthracenes 7b and 7c were synthesized by addition of 2-methylbenzylmagnesium chloride to anthrone and 1-chloroanthrone, respectively, followed by dehydration with thionyl chloride-pyridine. All the new compounds were satisfactorily analyzed.

All four compounds showed a similar dnmr behavior. At low temperatures (ca. -30°C) ¹H-nmr spectra showed the presence of two kinds of rotamers with respect to the CH₂-C₉ bond, ap and ±sc, in the ratio shown in Table I. Benzylic methylene protons of the ap isomer gave a singlet, while those of the ±sc isomer gave an AB-quartet. 1-Methoxyl protons of compound 3 gave rise to two peaks as well as both of 1- and 4-methyl protons of compound 4. o-Methyl signals in the benzyl group also appeared as two singlets except for compound 3 in CDCl₃ where accidental coincidence of the chemical shifts occurred.

In these stable conformers, the o-methyl group in the benzyl moiety is assumed to point toward the outside of the triptycyl skeleton (ap and ±sc in Scheme). Molecular model considerations easily reject the possibility of a methyl-inside conformation as a stable entity(ap' and ±sc' in Scheme).

Upon raising the temperature, the AB-quartet signal due to the sc-methylene protons coalesced into a singlet at the temperature range of $+3 \sim +13\,^{\circ}\text{C}$, while the other part of the spectrum except for the aromatic region showed no appreciable change. At 34 $^{\circ}\text{C}$ signals due to the methylene protons appeared as two singlets. Further elevation of the temperature caused the coalescence of both sets of two singlets due to methylene and o-methyl protons. The peaks due to 1-methoxyl of 3 and 1- and 4-methyls of 4 coalesced as well.

These dnmr behaviors indicate that the interconversion between the +sc and -sc conformers occurs without intervention of the ap conformer and that the interconversion between the ap and ±sc conformers has a higher barrier.

Compound	±sc/ap	Methy ap	ylene ±sc a)	o-Me ap	thy1 ±sc	1-Subs	tituent ±sc	Bridg ap	ehead ±sc	Temp.
3	2.9	4.73	4.00 4.65	2.66 (2.51	2.66 2.31) b)	3.82	2.92	5.50	5.50	-32
4	1.0	4.57	4.14 4.54		c)	2.81	1.93	5.76	5.76	-33
5	0.7	4.79	4.08 4.85	2.68	2.62			5.48	5.48	- 30
6	0.7	4.79	4.08 4.91	2.70	2.64			6.18	6.13	-35

Table I. Low Temperature 1 H-nmr Data (δ in CDC1 $_{3}$)

a) Appeared as an AB-quartet with ${\rm J_{AB}}$ of 18 Hz. b) In toluene-d $_{8}$ at - 32°C.

c) While 1-methyl signals were assigned from the coalescence behavior, those due to o-methyls and 4-methyls at $S_{2.47}$, 2.58, 2.63, and 2.67 could not be assigned.

Rate constants at the coalescence temperatures and free energies of activation therefrom were calculated using the approximate equation by $\overline{O}ki$, Iwamura, and Hayakawa³⁾ for the +sc \rightleftharpoons -sc process and the graphical method by Shanan-Atidi and Bar-Eli⁴⁾ for the ap \rightleftharpoons ±sc process. The results are shown in Table II.

Interconversion between the +sc and -sc conformers can be best explained in terms of two consecutive gear motions by way of the unstable ap' conformer with o-methyl group pointing toward the inside (Scheme). In the enantiomeric transition states the aryl group passes over a peri-hydrogen. Support for this notion may be obtained from the similarity of the barrier for compound 3 (13.5 kcal/mol) and the ap \rightleftharpoons \pm sc barrier

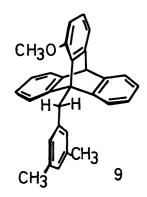

Compound	Solvent	±sc/ap	$ \begin{array}{ccc} +sc &\Longrightarrow -sc & Process \\ T_c & k_{c-1} & \Delta G_c^{\sharp} \\ (°C) & (sec^{-1})(kcal/mo1) \end{array} $			$\begin{array}{c} \text{ap} \rightleftharpoons \pm \text{sc Process a}) \\ \text{Tc} & \text{kc-1} \\ \text{(°C)} & \text{(sec }^{-1}) & \text{(kcal/mol)} \end{array}$			
3	CDC1 ₃	2.9	3	128	13.5	65 75 ^b)	25 _b)	17.7 _{b)}	
4	$^{\mathrm{C}}6^{\mathrm{D}}5^{\mathrm{CD}}3$	1.0	14	114	14.1	98	14	19.9	
5	$^{\mathrm{C}}{_{\mathrm{6}}}^{\mathrm{H}}{_{\mathrm{5}}}^{\mathrm{C1}}$	0.7	9	150	13.7	98	14	19.9	
6	C ₆ H ₅ C1	0.7	13	151	13.9	112	14	20.7	

Table II. Dnmr Data

a) Obtained from the methylene signals unless otherwise stated. k_c 's and ΔG_c^{\ddagger} 's denote the conversion from ap to either of $\pm sc$ isomers. b) Obtained from 1-methoxyl signals.

for compound 9 (12.4 kcal/mol), 2) if one takes it into account that the presence of the o-methyl group may raise the transition state to some extent.

Two types of pathways are possible for the ap \rightleftharpoons ±sc interconversion. One is a pathway consisting of two consecutive gear motions (ap \rightleftharpoons ∓sc' \rightleftharpoons ±sc), and the other is the one involving an isolated rotation (IR) step (ap \rightleftharpoons ap' \rightleftharpoons ±sc or ap \rightleftharpoons ±sc' \rightleftharpoons ±sc). The rate determining transition state in the former pathway should be the one where the aryl group passes over the peri-substituent (\mp sc' \rightleftharpoons ±sc), while in the latter the IR step should be rate

determining for the following reasons. Since the barriers to the $+sc \rightleftharpoons -sc$ interconversion are approximately 14 kcal/mol and those to the ap $\rightleftharpoons \pm sc$ over 17.7 kcal/mol, the rate determining step in the latter process must be the ap $\rightleftharpoons \pm ap'$ step, if the exchange occurs by the ap $\rightleftharpoons \pm sc$ pathway: barriers are common for both the $+sc \rightleftharpoons -sc$ and the ap $\rightleftharpoons \pm sc$ processes except that for the ap $\rightleftharpoons \pm ap'$. Similarly the rate determining step in the ap $\rightleftharpoons \pm sc' \rightleftharpoons \pm sc$ pathway should be the $\pm sc' \rightleftharpoons \pm sc$. The $\pm sc \rightleftharpoons \pm sc'$ IR step should have higher barrier than the ap $\rightleftharpoons \pm ap'$ IR step because the bulky peri-substituent X flanks the aryl group in the former while two peri-hydrogens flank it in the latter. The bulkier flanking groups have been shown to raise the IR barrier in 9-(3,5-dimethylbenzyl)triptycenes and the present system with an o-methyl group would suffer even larger effects of the peri-substituents.

Looking at the conformations of ap and ap', one notes that the barrier to the ap \rightleftharpoons ap' process must practically be invariant irrespective of the peri-substituents, because the latter is remote from the rotation site. The effects of perisubstituents on the barrier (Table II) are contradictory to this expectation and thus the ap \rightleftharpoons ap' \rightleftharpoons \pm sc pathway is ruled out. And hence the ap \rightleftharpoons \pm sc' \rightleftharpoons \pm sc pathway is also ruled out on the basis of the discussion above.

The increase in the barrier by 2kcal/mol on the change in the peri-substituent, from methoxyl to methyl or chloro, is reasonable with the $ap \rightleftharpoons \mp sc' \rightleftharpoons \pm sc$ pathway because the aryl group must pass over a bulkier peri-substituent.

Thus we conclude that the ap $\rightleftharpoons \pm sc$ interconversion occurs by the ap $\rightleftharpoons \pm sc' \rightleftharpoons \pm sc$ pathway, which consists of two consecutive gear motions, the $\mp sc' \rightleftharpoons \pm sc$ step being rate determining.

References.

- 1) Restricted rotation involving the tetrahedral carbon. XXX. Part XXIX: Ref. 2.
- 2) G. Yamamoto and M. \overline{O} ki, Chem. Lett., 1251 (1979).
- 3) M. \overline{O} ki, H. Iwamura, and N. Hayakawa, Bull. Chem. Soc. Jpn., 37, 1865 (1964).
- 4) H. Shanan-Atidi and K. H. Bar-Eli, J. Phys. Chem., <u>74</u>, 961 (1970).

(Received August 16, 1979)